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Weighted scale-free networks in Euclidean space using local selection rule
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A spatial scale-free network is introduced and studied, whose motivation originated in the growing Internet
as well as airport networks. We argue that in these real-world networks a new node necessarily selects one of
its neighboring local nodes for connection and is not controlled by preferential attachment as in the Barabdsi-
Albert (BA) model. This observation is mimicked in our model where the nodes pop up at randomly located
positions in the Euclidean space and are connected to one end of the nearest link. In spite of this crucial
difference it is observed that the leading behavior of our network is like that of the BA model. Defining the link
weight as an algebraic power of its Euclidean length, the weight distribution and the nonlinear dependence of
the nodal strength on the degree are analytically calculated. It is claimed that a power law decay of the link
weights with time ensures such nonlinear behavior. Switching off the Euclidean space from the same model
yields a much simpler definition of the BA model where numerical effort grows linearly with N.
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Studying the structure of communication networks is im-
portant in its own right because it helps in understanding the
network and its traffic flow distribution, which in turn helps
in making the communication process more efficient. Over
the last several years many real-world networks are being
studied with much interest. The examples range over social
networks, electronic networks, and biological networks
[1-3]. An important subclass of these networks is spatial
networks, i.e., those embedded in the Euclidean space. Two
most important examples of these networks are electronic
communication networks like the Internet [4—6], which is a
transport network of electronic data packets, as well as the
public transport system of airport networks [7,8].

The common property of these two networks is their
highly inhomogeneous structure. This inhomogeneity is re-
flected in their nodal degree distribution (the degree k of a
node is the number of links attached to it) which is observed
to follow a power law distribution: P(k)~k™%. It was
Barabdsi and Albert (BA) who first recognized that indeed
there are many other real-world examples of social and bio-
logical networks having similar structures [9]. Since these
networks lack a characteristic value for the nodal degree,
they are called scale-free networks [1,9].

BA observed two key characteristics for these networks:
(i) they are growing networks and (ii) an inherent “rich get
richer” mechanism exists, which ensures that large-degree
nodes grow at higher rates. In the BA model a network
grows by addition of new nodes which become connected to
the growing network using a linear attachment probability. In
this paper we question the general necessity of this “linear
attachment” rule. We argue that at least for spatial networks
like the Internet and the airport network the existence of such
a rule for the expanding network seems to be highly implau-
sible.

If you buy a new computer and would like to connect it to
the Internet what do you do? If it is a home computer you
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use a modem and a dial-up telephone line to connect it to the
nearest router of the telephone company. If it is your office
computer, it gets a connection to the office router, which is
eventually connected to the nearest node of the Internet ser-
vice provider (ISP) your organization opted for. If your office
is a part of your university or organization, several routers
are used and at the autonomous systems level they are con-
nected to the nearest ISP again. Therefore new nodes of the
Internet at any level are always connected to the existing
local nodes of the network. A person in Chile would hardly
give any extra importance to large ISP hubs in Tokyo, Stut-
tgart, or Chicago rather than small providers in his/her local-
ity. Considering the whole world-wide Internet network it is
apparent that new nodes pop up randomly in space and time
without any spatial correlations.

Similar arguments can be put forward for the airport net-
work as well. A new airport in some remote city in some
country is quite likely to be connected to a neighboring air-
port first by direct nonstop flights and very unlikely to have
cross-country intercontinental flights to begin with. Recent
studies of International Air Transport Association airport net-
work data also revealed that the weights w;; of the links in
this network defined either by the number of passenger seats
or by the Euclidean distance between successive stops have
nontrivial variations [10]. The nodal strength defined as s,
=2 w;; varies as (s(k))o< kP with S>1. A number of models
have been proposed to explain such nonlinearity [11-13].

In this paper we study a growing network on Euclidean
space where new nodes are added one by one and are con-
nected to the neighboring nodes of the growing network. We
show that even such a network has a scale-free degree dis-
tribution. In addition, these networks have nontrivial depen-
dence of the average strength on the nodal degree.

A spatial network is grown on a two-dimensional space
whose nodes are points at randomly selected positions within
a unit square on the x-y plane (with periodic boundary con-
ditions) [14]. Let {(x1,y1),(x2,¥2), ..., (xy,yn)} represent the
coordinates of N randomly distributed points within this
space where each coordinate is an independent and identi-
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FIG. 1. The picture of a network of N=2'2 nodes; each node is
a randomly positioned point on the unit square and is connected
randomly to one end of the nearest link.

cally distributed number drawn within {0,1}. The growth of
the network starts with a pair of nodes 1 and 2 connected by
a single link. Nodes labeled 3 to N are then introduced one
by one and are connected to the growing network.

At some intermediate stage let the network have 7 links
and 7+ 1 nodes. For connecting the (#+2)th node to the net-
work, the nearest link center is selected. One of the two end
nodes of the nearest link is then chosen with equal probabil-
ity and is connected to the new node to create the (r+1)th
link (Fig. 1). This is executed by keeping the local informa-
tion into memory. The unit square area is divided into a
lattice of size VN X VN. As the network grows the serial num-
bers of the links whose centers are positioned within a lattice
cell are stored at the associated lattice site. To find the near-
est link center one starts from the cell of the (¢+2)th node
and searches the lattice cells shell by shell until the nearest
link center is found out. When #~ N only the nearest shell
needs to be searched.

After the network has grown to N nodes, the degree dis-
tribution P(k,N) is calculated. From a direct measurement of
the slope of the log P(k,N) vs log k plot the exponent ¥; is
estimated to be 3.00+0.05, which is close to the BA value.
Moreover, a scaling of P(k,N) is also studied [Fig. 2(a)]:

P(k,N) = N""G(kIN®) (1)

where 7=3/2 and {=1/2 are used to obtain the best data
collapse giving y,=7/{=3. The network so generated has a
tree structure. However, networks having more general struc-
tures with multiple loops can be generated with m links com-
ing out from every incoming node and are attached in a
similar way to the first m neighboring links in increasing
order. In Fig. 2(b) we show that degree distributions for m
=2 and 3 can be scaled as P(k,N)m~ "%« N-"G(k/N?).

The link lengths are also measured and their probability
distribution is calculated as studied in [14]. Let D(€)d{ de-
note the probability that a randomly selected link has a
length between € and € +d€. For a given Poisson distribution
of N points let us first calculate the first-neighbor-distance
distribution. Consider a point P at an arbitrary position. The
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FIG. 2. (a) Finite-size scaling analysis of the degree distribution
for three system sizes N=2'* (solid line), 2'® (dashed line), and 2'8
(dotted line) and for three values of the number of outgoing links
m=1, 2, and 3 (from left to right). (b) Same plot as in (a) but scaled
with m=167,

probability that its first neighbor is situated at a distance
within r and r+dr (which can be done in N—1 different
ways) and all other N—2 points are at distances greater than
r+dris

P(r)dr=(N=1)2mrdr(l — mr)N2. (2)

In the limit of N— e it can be approximated that N—1=N
—2~N and since the average area per point decreases as
I/N, ar* is very small compared to 1. Therefore (1
—mr*)N=2 is approximated as exp(—mNr?). Therefore in the
limit of N— the probability density distribution is P(r)
=27Nr exp(—Trer) or in the scaling form

P(r)/IN o (m/N)exp[- (r/N)?] (3)

where the scaling length 1/\N is the linear extent of the
average area per node.

In our case the number of nodes N in the system is not
fixed; rather it grows with time. Therefore the link lengths ¢
also decrease as time progresses. After some time the total
collection of links has a mixture of many different lengths.
Since initially there were only a few nodes the early links are
very large and may be as big as the box size, whereas the last
few links are very small and have lengths of the order of
o~1/ VN. The effect of the mixing is twofold as observed
numerically. The distribution of small link lengths (later
stage) up to €, ~2.5¢, is different from Eq. (3) but still
follows a scaling form:

D(L,N) < \NF(C\N). )

The scaling function fits very well the generalized Gamma
distribution G(x)=Ax“ exp(—bx‘) where A=12.6, a=~1.4, b
~3.11, and ¢=0.83 [Fig. 3(a)]. On the other hand the long
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FIG. 3. Finite-size scaling analysis of the link length distribution
D(€,N) for three system sizes N=2'# (solid line), 2'® (dashed line),
and 2'® (dotted line). (a) shows the plots on a linear scale whereas
in (b) a double-logarithmic scale has been used for the same data
but binned on the exponential scale.

carly links contribute to a power law tail as D(€) ~ £~ % for
€, <{<\2/2 with y,,~3.0 [Fig. 3(b)].

Like the weighted airport network [10] the strength s; of a
node i is measured as the sum of the Euclidean lengths of all
links meeting at i: 5;=3{]}, {;; being the length of the link
between the nodes i and j and a a continuously tunable
parameter. This parameter generalizes the model to take care
of situations where the link weight may even vary nonlin-
early with the Euclidean distance, e.g., the route that an air-
craft takes for flying between two airports is quite often
greater than the length of the geodesic path between them.
For example, the ASIANA airline flies from Seoul to New
Delhi through the air space of Bangladesh. Also in the mo-
bile ad hoc network the power P; required to maintain the
range R; of transmission of each mobile element varies non-
linearly with the range, P;*RY, with | <a<6.

We first observe that, given a connected network of ¢
links, the whole space is partitioned into ¢ nonoverlapping
Voronoi cells, each cell surrounding the center of a link [15]
(Fig. 4). The center of the link is at a minimum distance from
all points within this cell. The probability that a randomly
selected point is within a particular cell is equal to the area of
the cell. Since different Voronoi cells have different areas the
probability of selecting a link center is in general nonuni-
form. For a two-dimensional Poisson Voronoi tessellation the
cell sizes follow a Gamma distribution whose width scales as
1/t [16]. Therefore though for finite ¢ the cell sizes are non-
uniform, for t— o the cell size distribution is similar to a &
function implying that all cells have uniform size. In this
limit the probability that a particular node of degree k will be
linked is k/2 times the cell size—which gives rise to linear
preferential attachment as in the BA model. Therefore for a
very large network (N—<0) in our model the node selection
probability is different from that in the BA model at early
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FIG. 4. (Color online) On a unit square a six-link network is
drawn and the centers of the links are marked. The whole space is
then partitioned into six different Voronoi cells around these cen-
ters. Cells are marked by dropping 2'¢ randomly selected points in
this space and coloring with a particular color all points in a cell
that are nearest to the corresponding link center.

times (r small) whereas it asymptotically converges to the
BA preferential rule in the limit of r— . We conclude that
the leading behavior of our spatial network model is like the
BA model. We have already seen that even for finite N the
degree exponent y,=~3.0 as in the BA model.

Let us assume that the area of every Voronoi cell in the
network with ¢ links is uniform and is equal to 1/¢. This
implies that the ith node with degree k;(r) has probability
k;(t)/(21) to be linked with the new (7+2)th node. The factor
2 comes from the fact that one of the two end nodes of every
link is selected with equal probability. Therefore dk;(r)/dt
=ki(t)/(2t) and ki(t)=(¢/i)"?, exactly similar to the BA
model, resulting in P(k) k™.

Again, since the area of each cell is 1/t the typical length
€;; of the (#+1)th link to be connected to the node i is pro-
portional to (k;(1)/t)"?. Therefore the rate of increase of the
strength of the ith node is

ds(0)/drt = [dk(0)/dr](€5) = [k(D)/1]"*2, (5)

which is proportional to (¢i)~"?>~%* On integration over ¢
from t=i to ¢,

(1/2-al4
s(1) = s,(i) (m - i_m) : (6)
The value of s;(i) is estimated by the average strength of the

ith node when it was introduced and connected to an arbi-
trary previous node j, j=1,i—1,

Si(i) o l-—l/2—a/4. (7)
When ¢ is large in Eq. (6) the term i~%? is ignored,
Si(l‘) o l-—1/2—a/4(t1/2—a/4 + C). (8)

Writing i in terms of s;(¢)

i (tl/Z—a/4 + C)4/(2+a)[si(t)]—4/(2+a)_ (9)
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FIG. 5. Verification of the formulas for (a) y,(a)=1+4/2+a)
and (b) B(a)=1+a/2 (solid lines) with the numerical results
(circles) for N=2'4,

Since the serial number i and the strength s are both nodal
quantities they are interdependent and their probability dis-
tributions obey P(s,1)ds=—P(i,t)di; the negative sign is be-
cause as i increases s decreases. Using P(i,t)=1/t we get the

time-dependent probability distribution of the nodal
strengths as
P(S t) - _ 1£ o (tllz—a/4 + C)4/(2+a)< S—1—4/(2+a))
' tds 2+«
o t—2a/(2+a)s—l—4/(2+a). (10)

Therefore y,()=1+4/(2+ ) and using the general relation
Y=Y/ B+1-1/8[8] and y,=3 we get

Bla)=1+al2. (11)

The exponent of the distribution of w;;=¢7; varies as v,(a)
=1+2/a. A number of checks have been done to verify these
results. For a large network with N=2'* the strength distri-
bution and its average are calculated for 21 different values
of a equally spaced between 0 and 2. Results are found to be
quite consistent with the above formulas for y,(«) and B(a)
(Fig. 5).

Therefore the message is that a nontrivial value of 8> 1
indeed can be obtained in a weighted network when the link
weights decrease systematically as time elapses. In the above
model the link weight decreases as (if)~%*. This is consistent
with airport network data where early airports in big cities
like London, Paris, etc., have very high strengths. The fact
that these early airports have survived over more than a cen-
tury implies that they are connected with strong links of high
passenger traffic as well as long-distance links. Therefore if
the early links have maximal weights and if they decrease
inversely as a power of time, that can result in 8> 1.

A simple way to check this idea is to study the general-
ized BA model itself, starting from a single link. The weights
of the links are assigned by hand: A link which becomes a
part of the network at time ¢ carries a weight ~¢. Then if the
degree of the largest hub (k,,,) grows as t* (u=1/2 for the
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FIG. 6. Variation of the exponent 6(a) with a for N=2'4.

BA model) it can be shown that, for a<u, B(a)=1, and for
a>u, B(a)=alu. The weight distribution exponent varies
with @ as v, (a)=1+1/a. We observe that these results are
very consistent with the results in [12]. In this model each
link comes in with a constant weight and at the same time m’
randomly selected links gain additional weights w at each
time step. As a result old links increase their weights as time
increases. On simulating the Bianconi model network of size
N=2'* we calculated that the average weight of a link intro-
duced at time i decreases as i~%, which is exactly the result of
[12] that the weight of a link increases with time as (z/i)“. In
comparison to the conclusion of [13] that a global reorgani-
zation of weights (as in [13,12]) yields 8> 1, we claim that
ultimately the global reorganization or any other dynamics
has to ensure a power law decay of the link weights like ¢
to achieve B8>1. A similar conclusion has been drawn in
[12].

To study the correlation between the nodal degrees and
the link weights Barrat et al. [8] calculated how the product
of the degrees k;k; of the two end points of a link varies with
the link weight wy;,

<Wij> * (kik,‘)a(a)~ (12)

A direct calculation of (w;;) averaged over different configu-
rations generated for different values of a for our spatial
network shows that the variation is almost linear (Fig. 6).
We further observe that our model can be generalized
when the new node selects one of the ¢ links randomly with
a probability d°/3'_,d° where & is a continuously tunable
parameter. Therefore in the limit of 6— —o we retrieve the
above model. On the other hand for =0 the underlying Eu-
clidean space is switched off and the networks are generated
in a much simpler way. To add the (¢+1)th link, a link j is
selected out of # links with uniform probability 1/¢. The new
(r+2)th node is then randomly connected to one end of j
with probability 1/2. Therefore a node of degree k has the
probability k/(2¢) to be linked with the new node, which
clearly satisfies the requirement of linear attachment prob-
ability of the BA model. Therefore we claim that the algo-
rithm where the new node selects one of the links with uni-
form probability and gets connected to its one end with
probability 1/2 is exactly the BA algorithm. Computation-
ally there is a lot of advantage; it takes a CPU time linearly
proportional to N as already observed in [2,17,18]. The net-
work so generated clearly has a tree structure. However,
loops can also be generated easily by connecting each new
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node with m distinct links, each link being attached with the
same rule. The resulting network is exactly the BA network
with m outgoing links from each node.

Finally it is observed that the case of the nonlinear attach-
ment rule in BA model when the probability of attachment
varies as k€ cannot be obtained by generalizing this model.
Let the two end nodes of the randomly selected link have
degrees k; and k»; then depending on their degrees one of
them is selected with the following probabilities:

plk)) =ki/(ki +k3) and  p(ky) =k3/(kT+k3)  (13)

with p(k;)+p(k,)=1. The BA model corresponds to €=0.
However, on reducing e gradually through its negative val-
ues, the node with the smaller degree gets more preference to
be connected. Therefore in the limit of e— — the node with
smaller degree is always selected with probability 1. Even in
this limit the network has a branched structure because if the
two end nodes have equal degrees, any one of them gets
connected with the new node with probability 1/2. On the
other hand when €>0, the node with a larger degree gets
more weight and in the limit of e— the end node with
larger degree always gets the new connection, resulting in a
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starlike structure. When € decreases below zero, the degree
distribution becomes stretched-exponential-like, P(k,e<<0)
~ exp(—ak?¥) where the exponent b(e) has a continuous
variation with €, expected to reach 1 as e——% and 0 when
€—0. Our numerical estimates for b(€) for different values
of € fit very well to the form b(e)=ay(—€)"—b, where the
constants are estimated to be ay=1.19, v=0.14, and b,
~(.85.

To summarize, we argue that in the growing Internet as
well as in the airport network it is more likely that the new
nodes get their connections in the local neighborhood. In-
deed, a spatial scale-free network is grown using the criterion
of the local selection rule. This network shows a nonlinear
dependence of the nodal strength on the degree. We conjec-
ture that, irrespective of what the dynamics may be, the non-
linearity is the result of a power law decay of the link weight
with time. When the same network is constructed without the
underlying Euclidean space it gives a very efficient algo-
rithm to generate the BA network.
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